歡迎訪問成都鑫南光機械設備有限公司官方網站!

成都鑫南光機械設備有限公司

二十年專業品質 通過ISO9001質量體系認證

立即咨詢

24小時咨詢熱線:
13908187709
新聞資訊
當前位置 當前位置:首頁 > 新聞資訊 > 最新活動

我們一起從頭了解一下光刻機設備

發布時間: 2021-12-06 來源: admin

光刻是集成電路重要的加工工藝,他的作用,如同金工車間中車床的作用。在整個芯片制造工藝中,幾乎每個工藝的實施,都離不開 光刻的技術。光刻也是制造芯片的關鍵技術,他占芯片制造成本的35%以上。在如今的科技與社會發展中,光刻技術的增長,直接關系到大型計算機的運作等高科技領域。

光刻機

光刻技術與我們的生活息息相關,我們用的手機,電腦等各種各樣的電子産品,裏面的芯片制作離不開 光科技束。如今的**是一個信息社會,各種各樣的信息流在**流動。而光刻技術是**制造承載信息的載體。在社會上擁有不可替代的作用。

光刻技術的原理

光刻機就是把芯片制作所需要的線路與功能區做出來。利用光刻機發出的光通過具有圖形的光罩對塗有光刻膠的薄片曝光,光刻膠見光後會發生性質變化,從而使光罩上得圖形複印到薄片上,從而使薄片具有電子線路圖的作用。這就是光刻的作用,類似照相機照相。照相機拍攝的照片是印在底片上,而光刻刻的不是照片,而是電路圖和其他電子元件。

光刻技術是一種精 密的微細加工技術。常規光刻技術是采用波長爲2000~4500埃的紫外光作爲圖像信息載體,以光緻抗光刻技術蝕劑爲中間(圖像記錄)媒介實現圖形的變換、轉移和處理,把圖像信息傳遞到晶片(主要指矽片)或介質層上的一種工藝。

在廣義上,光刻包括光複印和刻蝕工藝兩個主要方面:

1、光複印工藝:經曝光系統将預制在掩模版上的器件或電路圖形按所要求的位置,**傳遞到預塗在晶片表面或介質層上的光緻抗蝕劑薄層上。

2、刻蝕工藝:利用化學或物理方法,将抗蝕劑薄層未掩蔽的晶片表面或介質層除去,從而在晶片表面或介質層上獲得與抗蝕劑薄層圖形完全一緻的圖形。集成電路各功能層是立體重疊的,因而光刻工藝總是多次反複進行。例如,大規模集成電路要經過約10次光刻才能完成各層圖形的全部傳遞。

光刻技術在狹義上,光刻工藝僅指光複印工藝。

光刻技術的發展

1947年,貝爾實驗室發明一隻點接觸晶體管。從此光刻技術開始了發展。

1959年,**上一架晶體管計算機誕生,提出光刻工藝,仙童半導體研制**一個适用單結構矽晶片。

1960年代,仙童提出CMOS IC制造工藝,一台IC計算機IBM360,并且建立了**上一台2英寸集成電路生産線,美國GCA公司開發出光學圖形發生器和分布重複精縮機。

1970年代,GCA開發出一台分布重複投影曝光機,集成電路圖形線寬從1.5μm縮小到0.5μm節點。

1980年代,美國SVGL公司開發出一代步進掃描投影曝光機,集成電路圖形線寬從0.5μm縮小到0.35μm節點。

1990年代,n1995年,Cano着手300mm晶圓曝光機,推出EX3L和5L步進機; ASML推出FPA2500,193nm波長步進掃描曝光機。光學光刻分辨率到達70nm的“極限”。

2000年以來,在光學光刻技術努力突破分辨率“極限”的同時,NGL正在研究,包括極紫外線光刻技術,電子束光刻技術,X射線光刻技術,納米壓印技術等。

光學光刻技術

光學光刻是通過廣德照射用投影方法将掩模上的大規模集成電路器件的結構圖形畫在塗有光刻膠的矽片上,通過光的照射,光刻膠的成分發生化學反應,從而生成電路圖。限制成品所能獲得的非常小尺寸與光刻系統能獲得的分辨率直接相關,而減小照射光源的波長是提高分辨率的有效途徑。因爲這個原因,開發新型短波長光源光刻機一直是各個**的研究熱點。

除此之外,根據光的幹涉特性,利用各種波前技術優化工藝參數也是提高分辨率的重要手段。這些技術是運用電磁理論結合光刻實際對曝光成像進行深入的分析所取得的突破。其中有移相掩膜、離軸照明技術、鄰近效應校正等。運用這些技術,可在目前的技術水平上獲得更高分辨率的光刻圖形。

20世紀70—80年代,光刻設備主要采用普通光源和汞燈作爲曝光光源,其特征尺寸在微米級以上。90年代以來,爲了适應IC集成度逐步提高的要求,相繼出現了g譜線、h譜線、I譜線光源以及KrF、ArF等準分子激光光源。目前光學光刻技術的發展方向主要表現爲縮短曝光光源波長、提高數值孔徑和改進曝光方式。

移相掩模

光刻分辨率取決于照明系統的部分相幹性、掩模圖形空間頻率和襯比及成象系統的數值孔徑等。相移掩模技術的應用有可能用傳統的光刻技術和i線光刻機在非常好照明下刻劃出尺寸爲傳統方法之半的圖形,而且具有更大的焦深和曝光量範圍。相移掩模方法有可能克服線/間隔圖形傳統光刻方法的局限性。

随着移相掩模技術的發展,湧現出衆多的種類, 大體上可分爲交替式移相掩膜技術、衰減式移相掩模技術;邊緣增強型相移掩模, 包括亞分辨率相移掩模和自對準相移掩模;無鉻全透明移相掩模及複合移相方式( 交替移相+ 全透明移相+ 衰減移相+ 二元鉻掩模) 幾類。尤其以交替型和全透明移相掩模對分辨率改善顯著, 爲實現亞波長光刻創造了有利條件。

全透明移相掩模的特點是利用大于某寬度的透明移相器圖形邊緣光相位突然發生180度變化, 在移相器邊緣兩側衍射場的幹涉效應産生一個形如“刀刃”光強分布, 并在移相器所有邊界線上形成光強爲零的暗區, 具有微細線條一分爲二的分裂效果, 使成像分辨率提高近1 倍。

光學曝光技術的潛力, 無論從理論還是實踐上看都令人驚歎, 不能不刮目相看。其中利用控制光學曝光過程中的光位相參數, 産生光的幹涉效應,部分抵消了限制光學系統分辨率的衍射效應的波前面工程爲代表的分辨率增強技術起到重要作用, 包括: 移相掩模技術、光學鄰近效應校正技術、離軸照明技術、光瞳空間濾波技術、駐波效應校正技術、離焦叠加增強曝光技術、表面成像技術及多級膠結構工藝技術。在實用化方面取得引人注目進展的要數移相掩模技術、光學鄰近效應校正技術和離軸照明技術, 尤其浸沒透鏡曝光技術上的突破和兩次曝光技術的應用, 爲分辨率增強技術的應用更創造了有利條件。

電子束光刻

電子束光刻技術是微型技術加工發展的關鍵技術,他在納米制造領域中起着不可替代的作用。電子束光刻主要是刻畫微小的電路圖,電路通常是以納米微單位的。電子束光刻技術不需要掩膜,直接将會聚的電子束斑打在表面塗有光刻膠的襯底上。

電子束光刻技術要應用于納米尺度微小結構的加工和集成電路的光刻,必 須解決幾個關鍵的技術問題:電子束高精度掃描成像曝光效率低;電子在抗蝕劑和基片中的散射和背散射現象造成的鄰近效應;在實現納米尺度加工中電子抗蝕劑和電子束曝光及顯影、刻蝕等工藝技術問題。

實踐證明,電子束鄰近效應校正技術、電子束曝光與光學曝光系統的匹配和混合光刻技術及抗蝕劑曝光工藝優化技術的應用,是一種提高電子束光刻系統實際光刻分辨能力非常有效的辦法。電子束光刻主要的就是金屬化剝離,一步是在光刻膠表面掃描到自己需要的圖形。二部是将曝光的圖形進行顯影,去除未曝光的部分,第三部在形成的圖形上沉澱金屬,第四部将光刻膠去除,在金屬剝離的過程中,關鍵在于光刻工藝的膠型控制。使用厚膠,這樣有利于膠劑的滲透,形成清晰的形貌。

聚焦粒子束光刻

聚焦離子束(Focused Ion beam, FIB)的系統是利用電透鏡将離子束聚焦成非常小尺寸的顯微切割儀器,她的原理與電子束光刻相近,不過是有電子變成離子。目前商業用途系統的離子束爲液态金屬離子源,金屬材質爲镓,因爲镓元素具有熔點低、低蒸氣壓、及良好的抗氧化力;典型的離子束顯微鏡包括液相金屬離子源、電透鏡、掃描電極、二次粒子偵測器、5-6軸向移動的試片基座、真空系統、抗振動和磁場的裝置、電子控制面闆、和計算機等硬設備,外加電場于液相金屬離子源 可使液态镓形成細小尖 端,再加上負電場(Extractor) 牽引尖 端的镓,而導出镓離子束,在一般工作電壓下,尖 端電流密度約爲1埃10-8 Amp/cm2,以電透鏡聚焦,經過一連串變化孔徑 (Automatic Variable Aperture, AVA)可決定離子束的大小,再經過二次聚焦至試片表面,利用物理碰撞來達到切割之目的。

在成像方面,聚焦離子束顯微鏡和掃描電子顯微鏡的原理比較相近,其中離子束顯微鏡的試片表面受镓離子掃描撞擊而激發出的二次電子和二次離子是影像的來源,影像的分辨率決定于離子束的大小、帶電離子的加速電壓、二次離子訊号的強度、試片接地的狀況、與儀器抗振動和磁場的狀況,目前商用機型的影像分辨率高已達 4nm,雖然其分辨率不及掃描式電子顯微鏡和穿透式電子顯微鏡,但是對于定點結構的分析,它沒有試片制備的問題,在工作時間上較爲經濟。

聚焦離子束投影曝光除了前面已經提到的曝光靈敏度極 高和沒有鄰近效應之外還包括焦深大于曝光深度可以控制。離子源發射的離子束具有非常好的平行性,離子束投影透鏡的數值孔徑隻有0.001,其焦深可達100μm,也就是說,矽片表面任何起伏在100μm之内,離子束的分辨力基本不變。而光學曝光的焦深隻有1~2μm爲。她的主要作用就是在電路上進行修補 ,和生産線制成異常分析或者進行光阻切割。

EUV 光刻技術

在微電子技術的發展曆程中,人們一直在研究開發新的IC制造技術來縮小線寬和增大芯片的容量。我們也普遍的把軟X射線投影光刻稱作極紫外投影光刻。在光刻技術領域我們的科學家們對極紫外投影光刻EUV技術的研究.爲深入也取得了突破性的進展,使極紫外投影光刻技術.有希望被普遍使用到以後的集成電路生産當中。它支持22nm以及更小線寬的集成電路生産使用。

EUV是目前距實用化近期的一種深亞微米的光刻技術。波長爲157nm的準分子激光光刻技術也将近期投入應用。如果采用波長爲13nm的EUV,則可得到0.1um的細條。

在1985年左右已經有前輩們就EUV技術進行了理論上的探讨并做了許多相關的實驗。近十年之後微電子行業的發展受到重重阻礙才緻人們有了憂患意識。并且從微電子技術的發展過程能判斷出,若不早日推出極紫外光刻技術來對當前的芯片制造方法做出全 面的改進,将使整個芯片工業處在岌岌可危的地步。

EUV系統主要由四部分構成:極 端紫外光源;反射投影系統;光刻模闆(mask);能夠用于極 端紫外的光刻塗層(photo-resist)。

極 端紫外光刻技術所使用的光刻機的對準套刻精度要達到10nm,其研發和制造原理實際上和傳統的光學光刻在原理上十分相似。對光刻機的研究重 點是要求定位要極 其快速精 密以及逐場調平調焦技術,因爲光刻機在工作時拼接圖形和步進式掃描曝光的次數很多。不僅如此入射對準光波信号的采集以及處理問題還需要解決。

光刻機

EUV技術當前狀況

EUV技術的進展還是比較緩慢的,而且将消耗大量的資金。盡管目前很少廠商将這項技術應用到生産中,但是極紫外光刻技術卻一直是近些年來的研究熱點,所有廠商對這項技術也都充滿了期盼,希望這項技術能有更大的進步,能夠早日投入大規模使用。

各家廠商都清楚,半導體工藝向往下刻,使用EUV技術是必 須的。波長越短,頻率越高,光的能量正比于頻率,反比于波長。但是因爲頻率過高,傳統的光溶膠直接就被打穿了。現在,半導體工藝的發展已經被許多物理學科從各個方面制約了。



【全文完】

标簽:

鑫南光咨詢服務熱線:
13908187709

立即在線咨詢預約

掃一掃有驚喜哦

二維碼
地址:成都市蛟龍工業港雙流園區渤海路36号(3座)
版權所有:

成都鑫南光機械設備有限公司

備案号:京ICP證000000号

 
聯系人:劉經理 電話:028-85730589     技術支持:  萬家燈火  
  全國服務熱線:15390063681  郵箱:x.n.g@163.com